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The mesocrystal showing both electrorheological and magnetorheological effects is called electro-
magnetorheological(EMR) solids. Prediction of the overall magnetic properties of the EMR solids is a chal-
lenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as
long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present
an anisotropic Kirkwood-Fröhlich equation for calculating the effective permeabilities by adopting an explicit
characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fröhlich
equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective perme-
ability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the
usual Kirkwood-Fröhlich equation and Onsager equation naturally. To this end, the numerical simulation shows
the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.
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I. INTRODUCTION

In 1998 and 1999 a new mesocrystal was reported[1,2]
which combines both electrorheological(ER) or magne-
torheological(MR) effects. This sort of mesocrystal is also
called electro- and magnetorheological(EMR) solids. In fact,
ER [3] and MR [4] fluids are generally particle suspensions
in which the particles have large electric polarizability or
magnetic permeability. In the application of an external elec-
tric or magnetic field, the suspended particles can form body-
centered tetragonal(bct) mesocrystallities, namely ER or
MR solids [5]. The EMR solid shows very interesting prop-
erties when the applied electric fieldE (in z axis) is perpen-
dicular to the magnetic fieldH (in x or y axis). In detail, in
case of dominate electric field or dominate magnetic field,
EMR solids have thick columns in the dominate field direc-
tion. These columns have a bct lattice as the ideal structure,
too. Recently, a novel structural transition in EMR solids was
theoretically[1] and experimentally[2] observed from bct to
face-centered cubic(fcc) lattice in the presence of crossed
electric and magnetic fields as the ratio between the magnetic
field and electric field exceeds a minimum value.

Understanding the magnetic properties of EMR solids is
critical to the design of EMR-fluid-based devices. Also, these
magnetic properties may provide valuable insight into the
character of the microstructure responsible for their field-
dependent rheology as well as models of the EMR effect.
Since for EMR solids the uniaxial anisotropy occurs natu-
rally, the magnetic properties in longitudinal fieldssLd
should be different from those in tranverse fieldssTd. Fur-
thermore, the structural transition can affect the effective
magnetic properties, and the long-range interaction between
the particles(lattice effect) should be expected to play an
important role as well. Thus, prediction of the overall mag-
netic properties of EMR solids is indeed a challenging task.

To calculate the effective permeability of EMR solids, the
existing methods for cubic arrays of spheres[6] or for a
suspension containing a dense array of particles[7] cannot

be used directly. Recently, one developed a theory of homog-
enization to study the effective permeability of MR solids
with a periodic microstructure[8]. In this paper, we shall
present a statistical-mechanical theory, in order to calculate
the effective permeability of the EMR solids.

This paper is organized as follows. In Sec. II, by devel-
oping the Kirkwood-Fröhlich equation and using the Ewald-
Kornfeld formulation, we present a statistical-mechanical
theory for the effective permeability of the EMR solids, and
the numerical results are given as well. This paper ends with
a discussion and conclusion in Sec. III.

II. FORMALISM AND NUMERICAL RESULTS

A. Contribution of permanent magnetic moments

For an EMR solid, its effective permeabilitymJe is uniaxi-
ally anisotropic due to the application of external fields. In
detail, the transverse componentme

sTd (in x or y axis) differs
from the longitudinal componentme

sLd (in z axis). In this con-
nection, the effective permeabilitymJe should possess a ten-
sorial form like

mJe = 1me
sTd 0 0

0 me
sTd 0

0 0 me
sLd 2 . s1d

Since all the permeable particles of the EMR solid have a
permanent magnetic dipole momentm, it becomes more dif-
ficult to derive the expression formJe. For this purpose, Kirk-
wood [9] and Fröhlich[10] introduced a continuum with
permeabilitymJe0 which arises from induced magnetization
only. Based on it, we shall derive the effective permeability
mJe of the EMR solid consisting of permeable particles with a
permanent magnetic momentm. Let us start by seeing each
particle withm to have a new tensorial momentmJ 8,

PHYSICAL REVIEW E 70, 041403(2004)

1539-3755/2004/70(4)/041403(5)/$22.50 ©2004 The American Physical Society70 041403-1



mJ 8 =
mJe0 + 2m2IJ

3m2IJ
m s2d

and to be embedded in a new host(introduced continuum) of
mJe0, wherem2 denotes the permeability of the nonmagnetic

carrier fluid, andIJ a unit matrix. The denominators in Eq.(2)
and in the following equations should be interpreted as in-
verse matrices. In this model each particle is replaced by a
point dipolemJ 8 having the same nonelectrostatic interactions
with the other point dipoles as the particles had, while the
magnetizability of the particles can be imagined to be
smeared out to form a continuum with permeabilitymJe0,
which will be derived in Sec. II B. Next, to include the an-
isotropic feature, we take a characteristic spheroid of volume
V, which containsn particles. In doing so, the particles in the
spheroid will be treated explicitly by taking into account the
contribution of the particle interaction to the effective perme-
ability. In principle, the approximation in this method can be
made as small as necessary by takingn sufficiently large.
Here we should remark that for discussing isotropic cases
Kirkwood [9] and Fröhlich[10] used a characteristic sphere.
As a matter of fact, no matter for a sphere or a spheroid, each
of them should reflect the physical properties of the whole
suspension. For instance, the number density inside the
sphere or spheroid should be identical to that of the whole
system under consideration. In this regard, for the present
EMR solid a characteristic sphere is far from being satisfac-
tory, and a characteristic spheroid can be used instead so that
the uniaxially anisotropic behavior of the suspension may be
considered more physically. We shall show that the explicit
spheroidal shape of choice can be determined exactly; see
Eq. (19) below.

All statistical-mechanical theories of the permeability
start from

B − m2H = 4prt , s3d

whereB andH denote the magnetic induction and Maxwell
field in the material outside the spheroid, respectively. By
definition, we write for the magnetization densityrt as

rtV = kM tl, s4d

wherekM tl stands for the average total magnetic moment of
the spheroid. Here and belowk¯l stands for a statistical
mechanical average, e.g.,

kM tl =
e dXM texp−U/kT

e dXexp−U/kT .

In this expression,X stands for the set of position and orien-
tation variables of all particles. HereU is the energy related
to the dipoles in the spheroid, and it consists of three parts:
the energy of the dipoles in the external field, the magneto-
static interaction energy of the dipoles, and the nonmagneto-
static interaction energy between the dipoles which are
responsible for the short-range correlation between orienta-
tions and positions of the dipoles.

Then, the tensorial effective permeabilitymJe of the whole
system can be defined as

BIJ= mJeH . s5d

In view of Eqs. (4) and (5), we take one step forward to
rewrite Eq.(3) as

smJe − m2IJdH =
4pIJ

V
kM tl. s6d

SincekM tl has the same direction asH, it suffices to calcu-
late the average component ofM t in the direction ofH, thus
we have

smJe − m2IJdH =
4pIJ

V
kM t · êl. s7d

Here ê is the unit vector in the direction of the field.
In general,rt andkM tl contain also terms in higher pow-

ers of H. Thus, s1/4pdsmJe0−m2IJdH is the first term in a

series development ofriIJ (induced magnetization) in powers
of H, and must be set equal to the term linear inH of the

series development ofkM t ·êlIJ in a Taylor series. So, we
obtain

mJe − m2IJ=
4pIJ

V
S ] kM t · êl

] H
D

H=0
. s8d

Owing to kM t ·êl=Vsri +rod and riIJ=s1/4pdsmJe0−m2IJdH,
we have

mJe − mJe0 = 4pIJS ] ro

] H
D

H=0
, s9d

where ro stands for the orientational magnetization arising
from the permanent magnetic moments. Rewriting with the
external fieldH0 instead of the Maxwell fieldH as the inde-
pendent variable we obtain

mJe − mJe0 =
4pIJ

V
S ] H0

] H
D

H=0
S ] kMo · êl

] H0
D

H0=0
, s10d

wherekMo·êl=Vro. In this case, the external field acting on
the spheroid is
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H0IJ=1
me

sTd

me
sTd + sme0

sTd − me
sTddgsTd 0 0

0
me

sTd

me
sTd + sme0

sTd − me
sTddgsTd 0

0 0
me

sLd

me
sLd + sme0

sLd − me
sLddgsLd

2H ; jJH , s11d

where the tensorial depolarization factorgJ represents the
spheroid shape. In fact, the degree of field-induced aniso-
tropy of the system is determined by howgJ deviates from

1/3IJ (isotropic limit). It is worth noting thatgJ will be deter-
mined explicitly [see Eq.(19)], and that its components sat-
isfy a sum rule 2gsTd+gsLd=1 [11].

Starting from

S ] kMo · êl
] H0

D
H0=0

= −
1

kT
KMo · ê

] U

] H0
L

H0=0
, s12d

eventually we have

S ] kMo · êl
] H0

D
H0=0

=
1

3kT
kMo

2lH0=0. s13d

If we use a tensorial Kirkwood correlation factorbJ, then
we obtain

IJkMo
2lH0=0 = nmJ82bJ . s14d

In view of Eqs.(11), (13), and(14), Eq.(10) can be rewritten
as

mJe − mJe0 =
4pN

3kT
mJ82jJ bJ , s15d

whereN denotes the number density of the particles. For an

isotropic system, namelygJ=1/3IJ, Eq. (15) reduces to the
usual Kirkwood-Fröhlich equation[10] which works for per-
meable particles with a permanent magnetic moment. IfgJ

=1/3IJ,bJ= IJ and mJe0= IJ, Eq. (15) reduces to the Onsager
equation[12] which treats nonpermeable particles with a per-
manent magnetic moment embedded in vacuum. However, it
is worth noting that in the derivation of the Onsager equation
only one particle is considered in the characteristic sphere.
That is, there is no more correlations between the particle
orientations than can be accounted for with the help of the

continuum method, thus yieldingbJ= IJ.

B. Contribution of induced magnetic moments

Now we are in a position to derive the induced-
magnetization-related permeabilitymJe0 by performing an
Ewald-Kornfeld formulation[13,14] so that the structural
transition and long-range interaction can be taken into ac-
count explicitly. The ground state of the EMR solid is a bct

(body-centered tetragonal) lattice, which can be regarded as
a tetragonal lattice, plus a basis of two particles each of
which is fixed with an induced point magnetic dipole at its
center. One of the two particles is located at a corner and the
other one at the body center of the tetragonal unit cell. Its
lattice constants are denoted bya3=q, and a1s=a2d=,q−1/2

along thez− andx−sy−d axes, respectively. In this case, the
uniaxial anisotropic axis is directed alongz axis. Asq varies,
the volume of the unit cell keeps unchanged, i.e.,Vc=,3.
Thus, the degree of anisotropy of the tetragonal lattice is
measured by howq is deviated from unity. In particular,q
=0.87358, 1 and 21/3 represents the bct, bcc(body-centered
cubic) and fcc lattice, respectively.

When one applies an external magnetic fieldH0 along x
axis, the induced dipole momentP are perpendicular to the
uniaxial anisotropic axis. Then, the local fieldH lc at the lat-
tice pointR=0 can be determined. Let us take the transverse
component as an example, and resort to the Ewald-Kornfeld
formulation [13,14] to calculate the local fieldHlc such that

Hlc = Po
j=1

2

o
RWÞ0W

f− g1sRjd + xj
2q2g2sRjdg

−
4pP

Vc
o
GW Þ0W

PsGW d
Gx

2

G2expS− G2

4h2 D +
4Ph3

3Îp
. s16d

In this equation,g1 andg2 are two coefficients, given by

g1srd =
erfcshrd

r3 +
2h

Îpr2
exps− h2r2d,

g2srd =
3erfcshrd

r5 + S 4h3

Îpr2
+

6h

Îpr4Dexps− h2r2d,

where erfcshrd is the complementary error function, andh
an adjustable parameter making the summation converge
rapidly. In Eq.(16), R andG denote the lattice vector and the
reciprocal lattice vector, respectively,

RW = ,sq−1/2lx̂ + q−1/2mŷ+ qnẑd,

GW =
2p

,
sq1/2ux̂+ q1/2vŷ + q−1wẑd,

where l ,m,n,u,v ,w are integers. In addition,xj and Rj of
Eq. (16) are given by
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xj = l −
j − 1

2
, Rj = URW −

j − 1

2
sax̂+ aŷ+ cẑdU ,

and the structure factorPsGW d=1+expfisu+v+wd /pg.
So far, let us define a local field factoraJ,

aJ =
3Vc

4p

Hlc

P
IJ. s17d

It is worth remarking thataJ is a function of a single variable,
namely, degree of anisotropyq. Also, there is a sum rule

2asTd+asLd=3 [15]. As q=1,aJ= IJ just represents the isotropic
limit. Next, we take one step forward to rewrite the well-
known Maxwell-Garnett theory for isotropic suspensions as
[14–16]

mJe0 − m2IJ

aJmJe0 + s3IJ− aJdm2

= f
m1 − m2

m1 + 2m2
IJ, s18d

wherem1 stands for the permeability of the particles. This is
a developed Maxwell-Garnett theory for uniaxially aniso-
tropic suspensions[14,15]. Then it is not difficult to see that
the depolarization factorgJ [Eq. (11)] characterizing the
shape of the characteristic spheroid of choice is determined
by

gJ =
1

3
aJ . s19d

The substitution ofmJe0 [obtained from Eq.(18)] into Eq.(15)
leads tomJe as a result.

C. Numerical results

Let us do some numerical simulations. Figure 1 displays
me

sTd andme
sLd as a function ofq. For this figure, we used the

Onsager consideration(i.e., assuming the characteristic

spheroid contains only one particle,bJ= IJ), with a focus on
the anisotropic effect. Asq=1, this system is in the isotropic
limit, yielding me

sTd=me
sLd. Thus, in Fig. 1 the two points at

q=1 are overlapped. It is found that the structural transition
of the EMR solid(measured by the variation ofq) can cause
mJe to change. To some extent, the numerical simulations
show the validity of monitoring the structure of EMR solids
by detecting their effective permeabilities.

III. DISCUSSION AND CONCLUSION

Here some comments are in order. An approximation ex-

pression for the Kirkwood correlation factorbJ can be ob-
tained by taking only nearest-neighbors interactions into ac-
count [17]. In this case, the characteristic spheroid may be
shrunk to contain only theith particle and all the nearest
neighbors. It is apparent thatbsLd or bsTd will be different
from 1 when there is correlation between the orientations of
neighboring particles. When the particles tend to direct them-
selves with parallel permanent magnetic moments,bsLd or
bsTd will be larger than 1. When the particles prefer an order-
ing with antiparallel moments,bsLd or bsTd will be smaller
than 1. As the EMR solid is subjected to the external mag-
netic field, all the particles can easily direct themselves with
parallel permanent magnetic moments. In this connection,
bsLd or bsTd should be larger than 1, or could approximately
be equal to 1+Nc whereNc denotes the number of the closest
neighboring particles. Nevertheless, onceNc.0, the correla-
tion between the nearest particles is included approximately,
and this(no figures shown here) does not affect the present
numerical result on the anisotropic effect asbsLd=bsTd=1,
i.e., Nc=0. In particular, asNc=4 (i.e., for a bct lattice), we
obtainme

sTd=17.40 andme
sLd=18.69. They both are larger than

those ofNc=0 due to the correlation, as expected.
The Bergman-Milton spectral representation(BMSR) [18]

is an effective method for calculating the effective dielectric
constant of a two-phase composite, and has been success-
fully applied in electrorheological fluids[19], in order to
discuss the frequency-dependent complex dielectric constant.
Alternatively, the BMSR should be expected to work for
EMR solids, and a favorable comparison between the BMSR
and the Ewald summation technique used in this work is
expected.

To sum up, the aim of the present work is to develop a
statistical-mechanical theory in order to calculate the effec-
tive permeability of a new mesocrystal(EMR solid). This
theory allows one to study the overall magnetic properties of
EMR solids, by taking into account the anisotropy and struc-
tural transition effects and the long-range interaction be-
tween the suspended particles. Our theory is expected to be
of value in computer simulations of magnetic/dielectric prop-
erties of EMR fluids.
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FIG. 1. (Color online) (a) me
sTd and (b) me

sLd as a function ofq.
Dot-dashed lines: bctsq=0.87358d, bccsq=1d, and fccsq=21/3d. Pa-
rameters: m1=2000, m2=1, m=5.8310−11 emu, f =0.2, N=4.2
3106cm−3, andT=298 K. Solid lines are a guide for the eye.
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