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Statistical-mechanical theory of the overall magnetic properties of mesocrystals
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The mesocrystal showing both electrorheological and magnetorheological effects is called electro-
magnetorheologicaEMR) solids. Prediction of the overall magnetic properties of the EMR solids is a chal-
lenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as
long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present
an anisotropic Kirkwood-Frohlich equation for calculating the effective permeabilities by adopting an explicit
characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fréhlich
equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective perme-
ability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the
usual Kirkwood-Frohlich equation and Onsager equation naturally. To this end, the numerical simulation shows
the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.
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[. INTRODUCTION be used directly. Recently, one developed a theory of homog-
enization to study the effective permeability of MR solids
In 1998 and 1999 a new mesocrystal was repofied] with a periodic microstructuré8]. In this paper, we shall

which combines both electrorheologicER) or magne- present a statistical-mechanical theory, in order to calculate
torheological(MR) effects. This sort of mesocrystal is also the effective permeability of the EMR solids.
called electro- and magnetorheologi@MR) solids. In fact, This paper is organized as follows. In Sec. Il, by devel-
ER [3] and MR [4] fluids are generally particle suspensionsoping the Kirkwood-Fréhlich equation and using the Ewald-
in which the particles have large electric polarizability or Kornfeld formulation, we present a statistical-mechanical
magnetic permeability. In the application of an external electheory for the effective permeability of the EMR solids, and
tric or magnetic field, the suspended particles can form bodythe numerical results are given as well. This paper ends with
centered tetragonalbct) mesocrystallities, namely ER or a discussion and conclusion in Sec. Ill.
MR solids[5]. The EMR solid shows very interesting prop-
erties when the applied electric fielel(in z axis) is perpen-
dicular to the magnetic fielth (in x or y axis). In detall, in Il. FORMALISM AND NUMERICAL RESULTS
case of dominate electric field or dominate magnetic field,
EMR solids have thick columns in the dominate field direc-
tion. These columns have a bct lattice as the ideal structure, For an EMR solid, its effective permeabilify, is uniaxi-

too. Recently, a novel structural transition in EMR solids wasa|ly anisotropic due to the application of external fields. In
theoretically[1] and experimentally2] observed from bt 1o getgl, the transverse componedf’ (in x or y axis) differs

face-centered cubifcc) lattice in the presence of crossed g0 the longitudinal component™™ (in z axis). In this con-

electric and magnetic fields as the ratio between the magnetiG,qtion the effective permeability, should possess a ten-
field and electric field exceeds a minimum value. ’ €

. ; ; ., . sorial form like
Understanding the magnetic properties of EMR solids is

critical to the design of EMR-fluid-based devices. Also, these

magnetic properties may provide valuable insight into the ,ug) 0 0

character of the microstructure responsible for their field- g=| 0 " o |. (1)

dependent rheology as well as models of the EMR effect. L

Since for EMR solids the uniaxial anisotropy occurs natu- 0 0 e

rally, the magnetic properties in longitudinal field&)

should be different from those in tranverse field3. Fur-  Since all the permeable particles of the EMR solid have a

thermore, the structural transition can affect the effectivgpermanent magnetic dipole moment it becomes more dif-

magnetic properties, and the long-range interaction betweelficult to derive the expression fqi.. For this purpose, Kirk-

the particles(lattice effecj should be expected to play an wood [9] and Frohlich[10] introduced a continuum with

important role as well. Thus, prediction of the overall mag-permeability iioo Which arises from induced magnetization

netic properties of EMR solids is indeed a challenging taskonly. Based on it, we shall derive the effective permeability
To calculate the effective permeability of EMR solids, the i, of the EMR solid consisting of permeable particles with a

existing methods for cubic arrays of sphefi@ or for a  permanent magnetic momemt Let us start by seeing each

suspension containing a dense array of partifféscannot  particle withm to have a new tensorial momert’,

A. Contribution of permanent magnetic moments
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oo+ 200l Bi = jiH. 5

i = Mot 20l 2 He (5
3M2|

and to be embedded in a new h@stroduced continuumof In view of Egs.(4) and (5), we take one step forward to

Mo, Where u, denotes the permeability of the nonmagneticrewrite Eq.(3) as

carrier fluid, and a unit matrix. The denominators in E®@)

and in the following equations should be interpreted as in-

verse matrices. In this model each particle is replaced by a - 4l

point dipolei’ having the same nonelectrostatic interactions (e = pol)H = T<Mt>- (6)

with the other point dipoles as the particles had, while the

magnetizability of the particles can be imagined to be
mear form ntinuum with permeabilj . _— . .

hich will be derved in Sec. 1 B. Next, to molude the an- SIce(M, has the same directon it sufices to calcu-

isotropic feature, we take a characteristic spheroid of voluméate the average componentdf in the direction ofH, thus

V, which contains particles. In doing so, the particles in the W€ have

spheroid will be treated explicitly by taking into account the

contribution of the particle interaction to the effective perme-

ability. In principle, the approximation in this method can be . - A7l R

made as small as necessary by takingufficiently large. (fe= m2l)H = T<Mt'e>- (7

Here we should remark that for discussing isotropic cases

Kirkwood [9] and Fréhlich[10] used a characteristic sphere.

As a matter of fact, no matter for a sphere or a spheroid, eac, . : . o .

of them should reflect the physical properties of the wholeﬂeree Is the unit vector in the_ direction of the f!eld.

suspension. For instance, the number density inside the In general,p; and{My contalrlalso terms in higher pow-

sphere or spheroid should be identical to that of the whole&rs of H. Thus, (1/4m)(ie—uol)H is the first term in a

system under consideration. In this regard, for the preserferies development Qj‘ir(induced magnetizatiorin powers
EMR solid a characteristic sphere is far from being satisfacof H, and must be set equal to the term lineaHrof the

tory, and a characteristic spheroid can be used instead so ﬂ?éries development ofM -é)T in a Taylor series. So, we
the uniaxially anisotropic behavior of the suspension may b%btain ! '
considered more physically. We shall show that the explicit
spheroidal shape of choice can be determined exactly; see
Eq. (19) below. -
All statistical-mechanical theories of the permeability - ~ 4l (a(Mt-@)
H=0

start from MQ_MZIZT 9H

-

(8

B - poH = 4mpy, 3)

whereB andH denote the magnetic induction and Maxwell owing to (M,-&=V(pi+p,) and P'r:(1/4ﬂ)(ﬁeo‘ﬂzﬁH,
field in the material outside the spheroid, respectively. BY o have L '
definition, we write for the magnetization denspyas

p’[V = <Mt>1 (4)
o o <[ d
where(M,) stands for the average total magnetic moment of Me— Meg = 4l (a—i"’) , (9
the spheroid. Here and belog--) stands for a statistical H=0
mechanical average, e.g.,
 dX Mexp VKT where p, stands for the orientational magnetization arising

My

= NTXP_UIKT' from the permanent magnetic moments. Rewriting with the
external fieldH, instead of the Maxwell fieldH as the inde-

In this expressionX stands for the set of position and orien- pendent variable we obtain
tation variables of all particles. Hetkg is the energy related
to the dipoles in the spheroid, and it consists of three parts:
the energy of the dipoles in the external field, the magneto- Al IHo (M, - &)
static interaction energy of the dipoles, and the nonmagneto- He— e = —( ) ( > , (10)
static interaction energy between the dipoles which are VA IH Juzo\ dHo  Jhg=o
responsible for the short-range correlation between orienta-
tions and positions of the dipoles.

Then, the tensorial effective permeabiljiis of the whole ~ where(M,-&)=Vp,,. In this case, the external field acting on
system can be defined as the spheroid is
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(M

Me 0 0
pe” + () = g™
- pg” -
Ho| = 0 0 H= fH ’ (11)
pe” + () = g™
e
0 0 <

L L L
W () - g

where the tensorial depolarization factgrrepresents the (body-centered tetragondhttice, which can be regarded as
spheroid shape. In fact, the degree of field-induced anisca tetragonal lattice, plus a basis of two particles each of
tropy of the system is determined by hajvdeviates from which is fixed with an induced point magnetic dipole at its
1/31 (isotropic limit). It is worth noting thaij will be deter- ~ center. One of the two particles is located at a corner and the
mined explicitly[see Eq(19)], and that its components sat- Other one at the body center of the tetragonal unit cell. Its
isfy a sum rule g +gL=1 [11]. lattice constants are denoted by=q¢ and a,(=a,)=€q /2
Starting from along thez- andx-(y—) axes, respectively. In this case, the
R uniaxial anisotropic axis is directed alom@xis. Asq varies,
(3<Mo'e>> _ 1 M _éﬂ (12) the volume of the unit cell keeps unchanged, i\&.7¢°.
dHg H0=O_ KT\ ° “dHg H0=0’ Thus, the degree of anisotropy of the tetragonal lattice is
measured by howg is deviated from unity. In particulag

eventually we have =0.87358, 1 and ¥ represents the bct, bgbody-centered
I(M., - &) 1 cubio) and fcc Iatti(_:e, respectively. o
(—") = —<|\/|§>H “o- (13) When one applies an external magnetic fielgl along x
dHo /hz=0 3KT 0 axis, the induced dipole momeRtare perpendicular to the

- uniaxial anisotropic axis. Then, the local fidi), at the lat-
If we use a tensorial Kirkwood correlation fact@y then  tice pointR=0 can be determined. Let us take the transverse
we obtain component as an example, and resort to the Ewald-Kornfeld
formulation[13,14 to calculate the local fieltH,. such that

M0 = N 2. (14 .
In view of Egs.(11), (13), and(14), Eq.(10) can be rewritten He=P2 X [~ 7(R) +X0y(R)]
as =1l R0
e o AN oo AmP - G2 p(—GZ) 4pP°
- =——m , 15 - II(G)—exp — | + ——. 16

whereN denotes the number density of the particles. For an. this equation

_ } . e ;y1 and y, are two coefficients, given by
isotropic system, namelg=1/3l, Eq. (15 reduces to the

usual Kirkwood-Fréhlich equatiofiL0] which works for per- _erfo(#r) N 27 ey

meable particles with a permanent magnetic momen§ If Nl ="3 \,,;rzeXp( r),

=1/3l,8=1 and =1, Eq. (15 reduces to the Onsager

equation[12] which treats nonpermeable particles with a per- 3erfd 7r) 4o 67

manent magnetic moment embedded in vacuum. However, it vo(r) = 5 ( =t = 4)exp(— 7r?),
Nt \rr

is worth noting that in the derivation of the Onsager equation

only one particle is considered in the characteristic sphergypere erféyr) is the complementary error function, angd
That is, there is no more correlations between the particlg, adjustable parameter making the summation converge
orientations than can be accougteg for with the help of th‘?apidly. In Eq.(16), R andG denote the lattice vector and the
continuum method, thus yielding=1. reciprocal lattice vector, respectively,

S— (7Y% + o 12mY 4+ ans
B. Contribution of induced magnetic moments R=((@ T+ g my+ana,

Now we are in a position to derive the induced- = 2T e 4. g
magnetization-related permeabilitiy, by performing an 627(‘1 uk+ g%y +qwa),
Ewald-Kornfeld formulation[13,14 so that the structural
transition and long-range interaction can be taken into acwherel,m,n,u,v,w are integers. In additiorns; and R; of
count explicitly. The ground state of the EMR solid is a bctEq. (16) are given by
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FIG. 1. (Color onling (a) u{” and(b) ul" as a function ofg.
Dot-dashed lines: ba=0.87358, bcdq=1), and fc¢q=29). Pa-
rameters: p;=2000, u,=1, m=5.8x10 emu, f=0.2, N=4.2
X 10°cm™3, andT=298 K. Solid lines are a guide for the eye.

=1 el j_—1(a5<+a“+cAz)
2 N7 2 yreay

and the structure factdﬁ(é):1+exdi(u+v +wW) /).
So far, let us define a local field factés;

3Ve Hic

47 P

>

a= l. (17)

It is worth remarking thaf¥ is a function of a single variable,

namely, degree of anisotropy. Also, there is a sum rule

20+ aM=3[15]. Asq=1,a=I just represents the isotropic
limit. Next, we take one step forward to rewrite the well-

known Maxwell-Garnett theory for isotropic suspensions asgg

[14-19
/Ieo ~ pol
Afleg+ (31 = Ay

whereu, stands for the permeability of the particles. This is
a developed Maxwell-Garnett theory for uniaxially aniso-
tropic suspensionfl4,15. Then it is not difficult to see that
the depolarization facto [Eq. (11)] characterizing the

Ml‘#zr

=f ,
M1t 22

(18)

shape of the characteristic spheroid of choice is determineﬁ\,

by
L1,
g=ca.

3

The substitution ofi [obtained from Eq(18)] into Eq.(15)
leads togi, as a result.

(19

C. Numerical results
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spheroid contains only one particlfé,:B, with a focus on
the anisotropic effect. Ag=1, this system is in the isotropic
limit, yielding x”=x". Thus, in Fig. 1 the two points at
g=1 are overlapped. It is found that the structural transition
of the EMR solid(measured by the variation gj can cause

e to change. To some extent, the numerical simulations
show the validity of monitoring the structure of EMR solids
by detecting their effective permeabilities.

I1l. DISCUSSION AND CONCLUSION

Here some comments are in order. An approximation ex-

pression for the Kirkwood correlation fact(ﬁ can be ob-
tained by taking only nearest-neighbors interactions into ac-
count[17]. In this case, the characteristic spheroid may be
shrunk to contain only théth particle and all the nearest
neighbors. It is apparent tha&™ or g7 will be different
from 1 when there is correlation between the orientations of
neighboring particles. When the particles tend to direct them-
selves with parallel permanent magnetic momeg$) or

BT will be larger than 1. When the particles prefer an order-
ing with antiparallel moments3® or 87 will be smaller
than 1. As the EMR solid is subjected to the external mag-
netic field, all the particles can easily direct themselves with
parallel permanent magnetic moments. In this connection,
B or A7 should be larger than 1, or could approximately
be equal to 1N, whereN, denotes the number of the closest
neighboring particles. Nevertheless, oe> 0, the correla-
tion between the nearest particles is included approximately,
and this(no figures shown heyeloes not affect the present
numerical result on the anisotropic effect g&)=8M=1,

i.e.,, N;=0. In particular, as\.=4 (i.e., for a bct latticg we
obtainu"'=17.40 andu”'=18.69. They both are larger than
those ofN.=0 due to the correlation, as expected.

The Bergman-Milton spectral representat{&VISR) [18]

an effective method for calculating the effective dielectric
constant of a two-phase composite, and has been success-
fully applied in electrorheological fluid$19], in order to
discuss the frequency-dependent complex dielectric constant.
Alternatively, the BMSR should be expected to work for
EMR solids, and a favorable comparison between the BMSR
and the Ewald summation technique used in this work is
expected.

To sum up, the aim of the present work is to develop a
statistical-mechanical theory in order to calculate the effec-
e permeability of a new mesocrystdEMR solid). This
theory allows one to study the overall magnetic properties of
EMR solids, by taking into account the anisotropy and struc-
tural transition effects and the long-range interaction be-
tween the suspended particles. Our theory is expected to be
of value in computer simulations of magnetic/dielectric prop-
erties of EMR fluids.
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